Long-Term Use of Darunavir/r QD Containing Regimens in Daily Practice in Europe: Retrospective Observational Cohort Data of 1,701 HIV-Patients

S. De Wit1, E. Florence2, L. Vandekerckhove3, B. Vandercam4, J.-C. Goffard5, E. Van Wijngaarden6, M. Moutschen7, R. Deemeester8, H. Piryns9, P. Thilakarathne10

1Saint-Pierre University Hospital, Brussels, Belgium, 2Institute of Tropical Medicine, Antwerp, Belgium, 3University Hospital Ghent, Belgium, 4Saint-Luc University Hospital, Brussels, Belgium, 5University Hospital Erasme, Brussels, Belgium, 6University Hospital Leuven, Belgium, 7University Hospital Charleroi, Belgium, 8Medical Department, Janssen-Cilag NV, Belgium, 9Statistical Department, Janssen, Belgium.

*Members of the Belgian HIV Research Consortium BREAK

Background

- DRV/r QD, in combination with other ARVs, is recommended as a first-line option for HIV-infected patients in different guidelines
- Once daily DRV/r (800mg/100mg) is available and reimbursed in Belgium for the treatment of HIV-infected patients since 2010
- DRV/r QD showed good efficacy and tolerability in treatment-naïve patients in a long-term clinical trial (192 week ARTENMS study)1 as well as in treatment-experienced patients with no DRV resistance-associated mutations (ODN study)2
- However, long-term data in real life clinical settings are limited

Belgian Cohort

Data from 1,701 HIV-infected patients were collected and analyzed. The majority of patients were male (66.5%), from Caucasian origin (48.6%), and had a mean age of 42.9 years. 33.1% were treatment-naïve (44.2% with baseline VL ≥1000 copies/mL) and 66.9% were ART-experienced (of which 48.5% were suppressed with VL <50 copies/mL).

Methods

Objectives

- Observation, non-interventional, non-comparative, retrospective, multicenter cohort study
- Data were collected from the existing databases on HIV-infected patients of 8 AIDS Reference Centers in Belgium

Inclusion Criteria:

- HIV-1 infected adults ≥18 years (treatment-naïve or experienced patients)
- Duration of DRV/r QD treatment in various regimes from 01/2010 to 01/2014, with a minimum follow-up of 6 months

Endpoints:

- Primary Endpoints: Time to discontinuation of DRV/r QD treatment and reasons for discontinuation of DRV/r QD containing regimens (using D.A. classification)3
- Secondary Endpoints: Virological suppression (viral load (VL) <50 copies/mL), change from baseline of CD4, lipids and kidney function

Results

Baseline Characteristics

Table 1: Baseline characteristics.

<table>
<thead>
<tr>
<th>Trait</th>
<th>All</th>
<th>NRTI</th>
<th>NNRTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>27.1 (8.5)</td>
<td>26.5 (8.4)</td>
<td>27.4 (8.7)</td>
</tr>
<tr>
<td>Gender, %</td>
<td>Female 56.2%</td>
<td>53.0%</td>
<td>61.3%</td>
</tr>
<tr>
<td>Race, %</td>
<td>White 82.6%</td>
<td>82.3%</td>
<td>83.6%</td>
</tr>
<tr>
<td>CD4 T cell count, cells/mm³</td>
<td>518.0 (260)</td>
<td>551.0 (268)</td>
<td>450.0 (247)</td>
</tr>
<tr>
<td>baseline VL, copies/mL</td>
<td>≥50 (95% CI) 80%–100%</td>
<td>≥50 (95% CI) 70%–100%</td>
<td>≥50 (95% CI) 50%–100%</td>
</tr>
</tbody>
</table>

Probability to remain on treatment overall

Table 2: Probability to remain on treatment (%).

Overall, 1,242 patients (73.0%) remained on DRV/r QD treatment as part of their ART during a median follow-up of 2.45 years. The probability to remain on treatment was 87.0% for the first year and 78.9% for the second year (Table 2).

Time to treatment discontinuation

The time to DRV/r treatment discontinuation, defined as the time from first treatment initiation until the end of treatment, is shown in Figure 1 for naïve patients and in Figure 2 for experienced patients.

Reasons for treatment discontinuation

The main reasons for treatment discontinuation were treatment simplification (6.7%), adverse events (6.9%, of which 4.0% were from the GI tract), and patients or physicians decide (3.5%), with small differences in treatment discontinuation between naïve and experienced patients. Discontinuation due to virological failure was only noted in 13 patients (0.8%). A reason for discontinuation was missing in 53 patients (3.1%).

Secondary Endpoints

Probability to maintain virological suppression

The vast majority of the 1504 subjects, which responded to treatment (VL <500 copies/mL), remained virologically suppressed. At the end of the follow-up period, 81% of the patients maintained virological suppression (Figure 2).

Acknowledgements

The authors thank the participating centres, Business & Decision for the data collection, and T.M. Life Science Consulting for the medical writing services. Furthermore, the authors thank Guy Van Ginderach and Gerti Ceunen from Janssen for their contribution. The study was funded by Janssen-Cilag NV, Belgium.

References

2. Caillot F et al. AIDS 2011, PMID: 21436124

Poster #131
HIV Drug Therapy Glasgow 2016

Contact Information

Professor Stephanie De Wit
Saint-Pierre University Hospital, Brussels, Belgium
E-mail: break@breakresearch.eu

Summary and Discussion

- This retrospective cohort analysis summarizes the long-term outcomes and experience with once-daily DRV/r-containing regimens in a diverse patient population (treatment-naïve vs. experienced) in Belgium
- Despite the general limitations associated with observational retrospective studies, the results from this study confirm previous trials’ outcomes and show the robust long-term efficacy and good tolerability of DRV/r QD in real life settings
- The study showed that the DRV/r QD-based regimens have a documented virological efficacy and a good tolerability with no substantial differences between naïve and experienced patients
- The rate of discontinuation of DRV/r QD in daily practice was low, and rarely due to lack of efficacy. No unexpected adverse events (AEs), and predominantly gastrointestinal (GI)-based AEs were reported

Detailed reasons for treatment discontinuation are shown in Table 3:

Table 3: Reasons for treatment discontination.

- Discontinuation rates (%) were calculated using the Kaplan-Meier method. Rates were calculated for all patients and for naïve patients (stratified by BL VL ≥50 copies/mL).
- Overall, 3.2% of patients discontinued treatment due to adverse events (6.9%, of which 4.0% were from the GI tract), and patients or physicians decide (3.5%), with small differences in treatment discontinuation between naïve and experienced patients.
- Discontinuation due to virological failure was only noted in 13 patients (0.8%). A reason for discontinuation was missing in 53 patients (3.1%).

Secondary Endpoints

Infection

- CD4 count increased by an average of 164.4 cells/mm³ from baseline to end of follow-up

Lipids

- TG, Tchol, HDL-C and LDL-C remained stable throughout the observation period

Renal parameters

- Renal parameters (eGFR) remained stable throughout the observation period

No significant differences were observed between BL VL < or ≥1000 copies/mL in naive patients (p=0.3129 log-rank test) and BL VL < or ≥250 copies/mL in experienced patients (p=0.3859 log-rank test). There were also no differences observed when stratified by gender, race, NRTI backbone or baseline CD4 count.

Secondary Endpoints

- Immunological response
- Lipids
- Renal parameters
- Adverse events (AEs), Toxicity
- Drug interaction
- Adherence
- Pregnancy
- Virological failure
- Laboratory
- Definite
- Esr
- Other
- Missing

No patients were lost to follow-up, 81% of the patients maintained virological suppression (Figure 2).

Figure 1. Time to DRV/r treatment discontinuation (Kaplan-Meier) for all naïve patients (stratified by BL VL ≥500 copies/mL and ≤500 copies/mL) and all experienced patients (stratified by BL VL <500 copies/mL and ≥500 copies/mL) related to DRV/r QD

Figure 2. Probability of maintaining virological suppression over time (Kaplan-Meier) for all patients (N=1504) and patients indicated as DRV/r QD. Loss of virological response was defined as viral load >50 copies/mL on two consecutive occasions.