mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1 infected patients

Van Gulck E1, Vlieghe E2, Vekemans M3, Van Tendeloo VFP1, Van De Velde A1, Smits E1, Anguille S2, Cools N3, Goossens H1, Mertens L2, De Haes W1, Wong J4, Florence E1, Vanham G1, Berneman ZN1

1. Department of Biomedical Sciences, Unit of Virology, Institute of Tropical Medicine, Antwerp, Belgium; 2. Department of Clinical Sciences, HIV and STD Unit, Institute of Tropical Medicine, Antwerp, Belgium; 3. Center for Cell Therapy and Regenerative Medicine, Antwerp, Belgium; 4. Department of Medicine, Massachusetts General Hospital, Boston, USA

Setting
Phased therapeutic vaccination, based on autologous monocyte-derived dendritic cell (Mo-DC), electroporated with mRNA encoding H2b Gag, Tat, Rev and Nef in HIV-1 infected subjects under stable HAART.

Research question
Safety, feasibility and induced T cell responses: ELISPOT, proliferation, polyfunctionality and virus-suppressive activity.

Subjects and methods
Subjects (Table 1): Six chronic HIV-1 patients with baseline CD4 T cell counts above 500 cells/µl, nadir CD4 T cell counts not below 300 cells/µl and plasma viral loads < 50 copies/ml for at least 3 months.

Vaccination scheme (Fig 1A and B): Clinical grade DC vaccines were prepared from Mo after activation/stimulation by anti-CD3/CD28 Ab plus IL-2 in vitro. Mo-DC were electroporated (EP) with codon optimized HIV-1 Gag, 2 Tat, 5 Nef pools in the x-axis. The number of IFN-γ spot forming cells (SFC) per million PBMC is shown; the color of the graphs corresponds to the time points indicated on the time axis on top. Increased breadth of IFN-γ responses was indicated by a star; w, number of weeks in relation to the first DC vaccination (T1). Overall % of T cells with > 2 functions increased after vaccination in all patients (p < 0.001).

Results
SAFETY AND FEASIBILITY (Table 1): Only local side effects. No feasibility problems. Stable clinical, viral and other parameters.

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>UPN</th>
<th>Demographic data</th>
<th>CD4+ T cell count/µL</th>
<th>Plasma viral load (copies/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H022</td>
<td>46</td>
<td>1251</td>
<td><50</td>
</tr>
<tr>
<td>H023</td>
<td>315</td>
<td>1092</td>
<td><50</td>
</tr>
<tr>
<td>H024</td>
<td>307</td>
<td>736</td>
<td><50</td>
</tr>
<tr>
<td>H025</td>
<td>48</td>
<td>1102</td>
<td><50</td>
</tr>
</tbody>
</table>

Discussion
1. Gag and TatRevNef mRNA loaded autologous DC vaccination is safe, feasible and immunogenic in HIV-infected subjects under stable HAART.
2. CD4 T cell mediated virus suppression activity against a vaccine-related strain can be induced and correlates with Gag specific T cell responses.
3. Breadth and polyfunctionality of the responses should be improved by including more universal sequences (e.g. conserved or mosaic) and more powerful immune enhancers (e.g. IL-21 or PD1 blocking).

InterRELATION BETWEEN VARIOUS RESPONSES:
- Virus suppressive activity at T4 correlated with Gag ELISPOT magnitude (R = 0.57 p < 0.05) and breadth (R = 0.56 p < 0.05).
- No correlation with TatRev-Net.
- Polyfunctionality also correlated with ELISPOT and proliferative responses.

Presented at the IAS Pre-Conference Symposium “Towards an HIV Cure”, 20 & 21 July 2012